CLCL (Geneva) DINN Parser: a Neural Network Dependency Parser Ten Years Later
نویسندگان
چکیده
This paper describes the University of Geneva’s submission to the CoNLL 2017 shared task Multilingual Parsing from Raw Text to Universal Dependencies (listed as the CLCL (Geneva) entry). Our submitted parsing system is the grandchild of the first transition-based neural network dependency parser, which was the University of Geneva’s entry in the CoNLL 2007 multilingual dependency parsing shared task, with some improvements to speed and portability. These results provide a baseline for investigating how far we have come in the past ten years of work on neural network dependency parsing.
منابع مشابه
Feature Engineering in Persian Dependency Parser
Dependency parser is one of the most important fundamental tools in the natural language processing, which extracts structure of sentences and determines the relations between words based on the dependency grammar. The dependency parser is proper for free order languages, such as Persian. In this paper, data-driven dependency parser has been developed with the help of phrase-structure parser fo...
متن کاملUniversal Dependency Parser: A Single Parser for Many Languages on Arc-Swift
Dependency parsing has been a longstanding task in NLP with a recent boost in performance thanks to neural network models. However, most dependency parsers are monolingual–a single parser is trained per language–and utilize transitionbased systems that are limited to local information. We utilize a novel transitionbased system, arc-swift, proposed in [1] that incorporates both local and global ...
متن کاملتولید درخت بانک سازهای زبان فارسی به روش تبدیل خودکار
Treebanks is one of important and useful resource in Natural Language Processing tasks. Dependency and phrase structures are two famous kinds of treebanks. There have already made many efforts to convert dependency structure to phrase structure. In this paper we study an approach to convert dependency structure to phrase structure because of lack of a big phrase structure Treebank in Persian. A...
متن کاملTraining with Exploration Improves a Greedy Stack LSTM Parser
We adapt the greedy stack LSTM dependency parser of Dyer et al. (2015) to support a training-with-exploration procedure using dynamic oracles (Goldberg and Nivre, 2013) instead of assuming an error-free action history. This form of training, which accounts for model predictions at training time, improves parsing accuracies. We discuss some modifications needed in order to get training with expl...
متن کاملDependency Parsing with LSTMs: An Empirical Evaluation
We propose a transition-based dependency parser using Recurrent Neural Networks with Long Short-Term Memory (LSTM) units. This extends the feedforward neural network parser of Chen and Manning (2014) and enables modelling of entire sequences of shift/reduce transition decisions. On the Google Web Treebank, our LSTM parser is competitive with the best feedforward parser on overall accuracy and n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017